When acoustic stimuli turn visual circles into ellipses: sounds evoking accelerations modify visuo-motor coupling

Thoret Etienne^{1,3,4}, Aramaki Mitsuko^{1,3,4}, Bringoux Lionel^{2,3}, Kronland-Martinet Richard^{1,3,4}, Ystad Sølvi^{1,3,4}

Background & Goal of the study

Vision is tuned to perceive biological motions kinematics, and induces perceptual-motor illusions

The velocity-curvature covariations, i.e. the 1/3 power law, constrains the visual perception of:

> - dynamic shape geometry (Viviani et al., 1989) - constancy of velocity (Viviani et al., 1992)

Audition also enables the identification of biological motion kinematics thanks to timbre variations

- Friction sounds produced by someone who is drawing reveal the underlying gesture

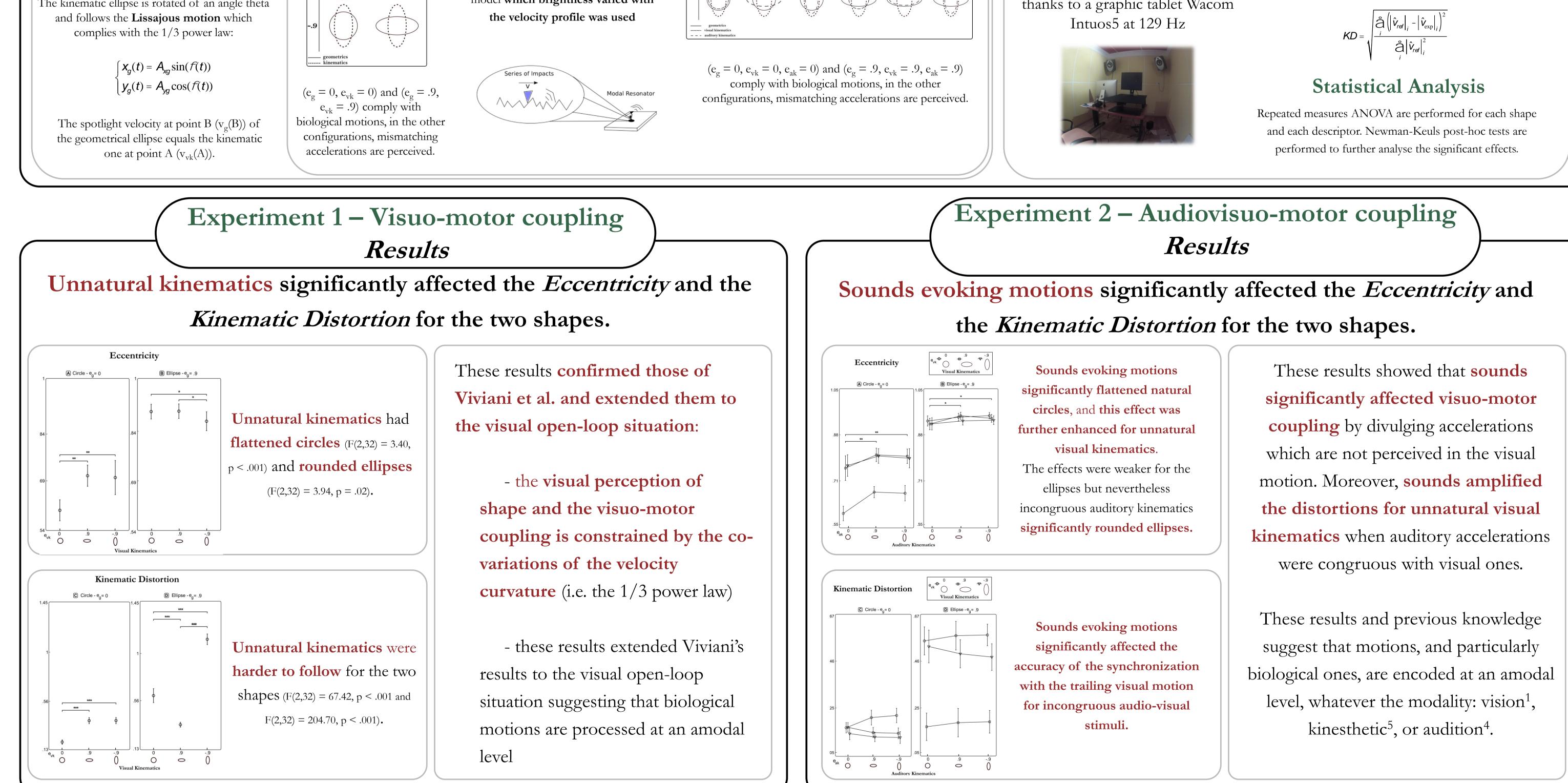
- An experiment reveals that subjects are able to calibrate kinematics-related synthesized friction sounds to evoke the most natural motion which interestingly corresponds to the 1/3 power law (Thoret et al., 2014)

What happens in a multimodal context?

Vision is known to dominate audition \bullet when perceiving discrete spatialized motions, but what happens with continuous audio-visual motions?

Visuo-motor tracking in closed loop is facilitated when visual motion complies with biological rules (Viviani et al., 1987)

Methods


Task

- Subjects are even able to associate simple geometrical shapes to the friction sounds produced when they are drawn (Thoret et al., 2014)

Can sounds evoking dynamic cues modify \bullet visuo-motor coupling?

The subjects were asked to synchronize their gestures with Visual Motions (exp. 1) or Audio-visual Motions (exp. 2) without seeing their hands (i.e. in visual open-loop) to help them imagine that they produced the motion themselves. The characteristics of their motor performances reveal the motion they perceived.

Mathematical	Stimuli			Subjects	Data Analysis
Definition of Motions	<i>Visual Motions</i> (exp. 1 & 2)	Auditory Motions (exp. 2)	Audio-visual Motions (exp. 2)	17 subjects (15 men, mean age 28.59 , SD = 7.99) took part in the	
Two different ellipses are considered: the Kinematic (dotted line) and the Geometrical (solid line) ellipse.	Six visual motions were generated from 2 geometrical shapes ($e_g = 0$	Three auditory motions were considered according to the visual	18 audio-visual motions were generated from the combination the 6 visual and the 3 auditory motions	2 experiments Apparatus	set of unitary masses.
Kinematic Ellipse Geometrical Ellipse	or .9) and 3 kinematic ellipses ($e_{vk} = 0$, .9 or9)	motion orientation. Synthesized friction sounds were generated from the velocity profiles: $e_{ak} = 0$ (Circle) –	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	The visual motions were displayed 60 Hz in a dark room.	
ο v _g (B)=v _k (A)	e _{vk} 0	e_{ak} = .9 and9 (Horizontal or vertical Ellipses)		The sounds were presented throu headphones at 44100 Hz samplin rate.	asynchrony between the produced movement and the
The kinematic ellipse is rotated of an angle theta	.9	A phenomenological friction sound model which brightness varied with		Motor performances were record	

Conclusions & Perspectives

- These two experiments firstly confirmed that the visuo-motor coupling is actually constrained by biological velocity-curvature co-variations.
- Secondly, they highlighted the role of auditory perception in the integration of audio-visual motions in a way never investigated before. The use of continuous sound morphologies pointed out that sounds can strongly affect the weight of visual modality in a multisensory restitution task.
- Theoretical and applicative perspectives can be envisaged, from the investigation of cognitive processes underlying biological motions perception, to the development of new interfaces using an audio-visual feedback for motor rehabilitation for expert gesture learning.

1. Viviani, P., & Stucchi, N. (1989) Atten. Percept. Psycho. 2. Viviani, P., & Stucchi, N. (1992) J. Exp. Psychol. Human 3. Viviani, P., Campadelli, P., & Mounoud, P. (1987) J. Exp. Psychol. Human 4. Thoret, E., Aramaki, M., Kronland-Martinet, R., Velay, J. L., & Ystad, S. (2014) J. Exp. Psychol. Human

This work was founded by the French National Agency (ANR) under the MetaSon: Sound Metaphors project (ANR-10-CORD-0003)

